Eurofins, Vegan Society Develop Vegan Verification Program via Cosmetics & Toiletries – read more


Vegan Roots


Siddha-inspired Botanical Extracts as Colorants for Hair Dyes ‣

Francesca Schumann, Annamaria Ratti and Viviana Brancato Bregaglio srl, Biassono, Italy


This article describes the development of hair dyes with 100% vegetable-derived colorants.

Testing showed good semi-permanent hair color efficacy without the use of synthetic colorants, alkalizers and peroxide or other oxidizers.

Editor’s note: This paper is excerpted from a thesis presented in 2020 by Francesca Schumann for hermaster’s degree in cosmetic science at the University of Pavia, Italy.

Dissatisfaction with the color of one’s hair, since the earliest of times, has led men and women to seek solutions to change it. The first records of hair coloring date back to Ancient Egypt and to traditions of the contemporary period in China and the Indian subcontinent. Ancient civilizations derived coloring substances from what nature had to offer: berries, fruits, leaves,flowers, roots and barks—as well as various minerals and biological sources.1 Today, women and an ever-increasing number of men are hair color- obsessed for several reasons, including fighting the signs of aging/gray coverage, the desire for change or to fully express theirpersonality.

Approximately 80% of women color their hair beginning in their thirties;2 men

do typically from their fifties, although not to the same extent.3

The dominant technology to manufacture today’s hair colors was developed at the end of the 19th century4 and is based on precursors and couplers that undergo oxidation—i.e., oxygen is supplied by developers containing diluted hydrogen peroxide; and colorants that impart the desired shade to hair in 30- 40 min. This process has remained largely unchanged today.

Dyes of natural origin also exist and contain botanicals with coloring properties; henna isperhaps the most well-known. These align with today’s consumer values for natural and sustainable products. Notably, some traditional oxidation dyes are marketed for botanical, natural or herbal additives but this can be misleading, as it conveys the idea that the productcontains only botanicals.

In fact, many times these components are added at percentages irrelevant to a product’s color effects. In response, the present article describes the development of a 100% vegetable-derived hair colorant for use in dyes without: synthetic colorants; alkalizers such as ammonia orother amines; and peroxide or other oxidizers. Further requirements included mildness to hairand the absence of adverse effects, e.g., allergic reactions in consumers or professionalhairdressers.

The approach taken was based on the Siddha tradition of natural medicine and well-being; a holistic system indigenous to the Tamil Nadu people in southern India and elsewhere.5, 6 This system can be traced back to at least 4,000 B.C. through textual and archaeological evidence,but also in the culture of ancient civilizations that existed in the same area, pre-dating much ofrecorded history. To Siddhars, all therapies were derived from vegetable or mineral sources.They also were among the first peoples to adapt their diets to achieve a balance betweenphysical and psychic well-being.:7

For the present work, as noted, semi-permanent dye formulas containing wholly naturalcolorants were created. These were tested for physicochemical properties, stability, carrier performance, color performance and other effects on hair, as described here.

Materials and Methods

Botanicals tested: A range of botanicals was chosen from vast geographical areas including: Tibet-South, Sikkim, The Republic of India, Myanmar, Sri Lanka, Bangladesh, Maldives, Mauritius, Madagascar, Vietnam, Laos, Cambodia, Indonesia, Malaysia, Philippines and other ASEAN countries. The specific extracts tested for tinctorial properties included: Aloe barbadensis,Coccinia indica (ivy gourd), Curcuma longa (turmeric), Eclipta prostrata (false daisy), Corallinaofficinalis (coral seaweed), Melia

azadirachta (neem), Moringa oleifera (horse radish), Ocimum basilicum (basil) andSolanummelongena(eggplant).

These extracts are provided in commercially available powder (oil or water soluble) or solution(in hydrophilic media and in oils)a form. The tests

described hereafter refer to only the Eclipta prostrata extractb, as it was the best option for the current work, which focused on obtaining natural tones such as light brown, dark blonde, golden blonde, etc. Other shades were under development when this study ended; these formulations are not included.

Colorants manufacturing process: The coloring extracts used for this study were obtained through a manufacturing process with minimal modifications to the original method (specific details undisclosed). Traditionally, the natural high molecular weight waxes from Siddha botanical sources are incorporated with a variety of substrates, e.g., minerals -amber or fresh water sourced seaweeds. The materials are buried together in earthenware containersunderground and heated by the sun, geothermically or by fire using a critical (high) temperature (the Puddam or Surya Patham process). The result is a calx of amber powder as mineral (or oxide), Corallina officinalis extract as coral seaweed finely coated with the colorant waxes.

Opens in modal lightbox

Test Formulations

As noted, several hair color formulas were developed based on different emulsifiers, from anionicto cationic and nonionic, to ascertain the stability and

color delivery performance of each formula. Emulsions were prepared by separately heating theoil and water phases, adding the oil to the water phase and homogenizing. The extract (colorant)was dispersed in a part of the water (5%) and added at the end of the process.

Different carrier ingredients also were tested to determine those most suited to improve colorsolubility and to obtain a perfect color release. Furthermore, this work sought to obtain data onthe most suitable pH and to determine the interval of values where the extracts maintained their dyeing properties. All formulas were developed at pH levels of 4.0, 5.0, 7.0 and 9.0; those ranging between 4.0-5.0 showed the best coloring effects, as will be shown. For the sake of brevity, only the best-performing formulas, which were based on powdered water-soluble(PWS) colorants, are discussed here.

Anionic surfactant system: Formula A was based on a blend of glyceryl stearate, cetearylalcohol, stearic acid and sodium lauroyl glutamatec.

This formula showed good performance for color delivery but it proved unstable during stabilitytesting. For this reason, it is not reported here; further improvements were made after theconclusion of the thesis work.

In formula C (see Table 1), an acyl-glutamate was used as the main emulsifier, andsodium cocoyl glutamated and cetearyl alcohol as the consistency factor. Also, aviscosity enhancere was added.

Nonionic surfactant system: In formula B (see Table 1), two different emulsifiers were used:laureth-4f and polyglyceryl-10 laurateg (50% solution) as co-emulsifier and solubilizer.

Cationic surfactant system: Cationic emulsifiers were excluded during pre- formulation due topoor performance for color delivery.

In all formulations, a booster/solubility enhancerh also was used. Its amphiphilic character wasfound to help the color molecules penetrate the hair’s outer layer (cuticle).

Natural Origin Index: Considering the present work aimed to develop a natural hair dye, theNatural Origin Index was calculated for the test formulas according to ISO 16128-2:2017. Formula B rated > 70%; Formula C was > 80%.

Physicochemical Parameters

Viscosity, pH, stability: Standard parameters for the two formulations, including viscosity, pHand stability, were measured after one day, one week, one month and three months. Results arereported in Tables 2 and 3.

Emulsion photostability—irradiation plus spectrophotometer: Further assessments of the light/heat-fastness of emulsions also were made instrumentally. For irradiation, a xenon arcchamber:j was used to reproduce the damage caused by full spectrum sunlight. This can reproduce, in a few days or weeks, the damage that occurs over months or years outdoors.This approach is compliant with the provisions set by ISO 16474-2:2013.For this test, each sample was split into two test groups; one cuvette protected by aluminum foil and the other unprotected. This approach ensures the protected samples can only be altered by heat, not by light. The exposure timefor samples was 12 hr.

The same samples were tested for changes in color by spectrophotometer k, indicative of long-term stability to light, both before and after irradiation.

Illuminant D65 and a 10-degree field of view were used.

ΔE was calculated according to the following formula:

where ΔL∗ is the variation between brightness before and after photostability, Δα∗ is the variation of red color change before and after photostability, and Δb∗ is the variation of yellow colorchange before and after photostability.

Results are reported in Table 4. Formulations B and C were stable to light and therefore submittedto further testing.

Hair Dyeing Protocol

To test the efficacy of the natural colorant in a dye formula, strands of natural Caucasian hair (60%+ gray) were procured. The application was performed to simulate in-use conditions: analkaline shampoo (pH ∼8.0) was applied to hair strands, left on for 2-3 min, rinsed and towel-dried. Both formulas B and C were applied to the strands with a flat brush and left on the hair for50 min.

Once the application time was over, the strands were rinsed until the water ran clear, thendried using a hairdryer.

Hair Structure and Color Penetration

A Filament Surface Tester (FST) was used to assess hair structure modifications and colorpenetration into the dyed hair fibers.

This technology8 is used for the quantitative evaluation of hair characteristics such as color and gloss. The device uses a light beam with specific wavelengths to illuminate the sample, both in vivo and ex vivo, and acquire digital images (see Figures 1a-b). Specific parameters areprocessed through dedicated software by the correlation of the different images and RGBreadings. RGB values were converted into L∗, a∗, b∗ values to calculate the ΔE.

The measurement protocol entailed comparing the results of the tested hair with those of natural untreated blonde human hair (positive reference) and with hair chemically treated with strong reducing agents (negative reference) at different intervals: T0; after application (T1); after3 washings (T2); and after 6 washings (T3). Figure 2 shows a comparison of digital images collected using the FST device.

FST analysis: Formulas B and C were compared, assuming ΔE > 2 as

significantly different. From all readings where DE > 2, results indicated both

formulas were effective as per their coloring effect (gray coverage) for up to six washings, as shown in Table 5 and Figure 3.

Data collected using the FST tester allowed for the evaluation of different hair properties, namely hair gloss (= intensity of reflected light) and color fastness to washings for each formulation, taking into consideration the specific areas of the test strands illuminated; i.e., aggregate pixel clusters close to the hair roots, tips, etc.

Figure 4 shows the values for Formulations B and C compared with the positive reference(untreated hair) and negative reference (chemically treated hair).

Upon illumination by the FST device, the larger the surface area of light reflection in hair, thegreater the structural damage, as this reflection indicates texture is less compact. In other words, the size of the surface area reflection is inversely proportional to values such as gloss and color fastness (i.e., the smaller the surface area, the greater the gloss and color fastness).Untreated hair presented narrow bands of reflection (approx. 6%), while chemically treated hair showed a larger area of reflection (17% and 10.5% for cluster areas IV and III, respectively). From these results, Formula B at T3 (T3B) represented the formulation closest to the positive reference—i.e., natural untreated blonde hair showing no structuraldamages (see Figure 4)— yielding the smallest area of surface reflection, which extrapolates to higher gloss and color fastness.

c considering the safe toxicological profile of the extracts, the pH and the lack ofalkalizers and oxidizers, the test formulas could represent an alternative for consumerswith known sensitivity to oxidation dyes.

Application Results

Figure 5a-c shows the reference natural, untreated Caucasian hair (> 60% gray) beforeapplication, and after the application (1 hr) of formulations B and C, respectively. Since the visual difference is not easily perceptible, differences have been ascertained throughinstrumental data (ΔE) taken from Table 5. The color delivery was different due to the different emulsifier used.


The present article describes the development of a 100% vegetable-derived hair colorant for use in semipermanent hair dyes without synthetic colorants, alkalizers (such as ammonia orother amines) and peroxide or other oxidizers. Multiple hair dye formulas were developed using botanically derived colorantsa, two of which are shown here, and tested for physicochemicalparameters and effects on hair structure and color. The results suggest the tested extracts are effective as natural colorants in semi-permanent hair dyes at a use level of 0.2%.

The best-performing formulas were acidic—in the pH range of 4.0 to 5.0. Higher pH levelsresulted in both poor color uptake and color fastness.

Notably, the use of different emulsifiers also greatly affected the resulting color on hair. Themost suitable systems for color uptake were nonionic and anionic while the cationic formula was easily washed away without color uptake.

Finally, through FST testing and L∗, a∗, b∗ measurements, the formulation based on nonionic surfactants and an amphiphilic carrier show good color fastness after six washings, maintaining gray coverage and improving hair gloss. FST results also indicated no damage occurred afterthe application of both test formulas; hair structure was more compact compared with thechemically treated negative reference, in turn producing higher gloss.

The present work therefore demonstrates the potential for developing hair dyes based on truly natural colorants to meet the demands of today’s consumers. In addition, considering the safe toxicological profile of the extracts, as well as the other ingredients; the pH; and thelack of alkalizers and oxidizers, the test formulas presumably represent an alternative for

consumers with known sensitivity to oxidation dyes, which can easily turn into allergic reactions.

Acknowledgments: The author gratefully acknowledges the support of her thesis adviser, Prof. Paola Perugini, University of Pavia, Italy; and of thesis co-advisers, the late LucaPasero, Ph.D., former CEO of Bregaglio srl, Italy; and Silvio Valle, Ph.D., CEO of One Lab srl, Italy, who provided insight and expertise, greatly assisting in this research.

a Campo Siddha Medico-Botanical Extracts (INCIs: Vary) and

b Campo Siddha Karushalai (INCIEclipta prostrata extract) are products of Campo Research.

c Protelan ENS, Zschimmer & Schwarz

d Protelan AGL 95 C, Zschimmer & Schwarz

Jeesperse CPW-S (INCI: Helianthus Annuus (Sunflower) Seed Wax (and) Sodium Polyacrylate), Jeen International

f Mulsifan CPA RSPO-MB, Zschimmer & Schwarz

Dermofeel G10 LW 70 (INCI: Polyglyceryl-10 Laurate (and) Water(Aqua) (and) Citric Acid), Evonik

Campo Bio IPD (INCI: Lonicera Caprifolium (Italian Honeysuckle) Flower Extract (and) Lonicera Japonica (Honeysuckle) FlowerExtract (and) Isopentyldiol), Campo Research

j Xenon Test Chamber Q-SUN Xe-1 Chamber, Q-LAB

k Shimadzu UV-2600 Spectrophotometer with single monochromator


  1. Wall, F.E. (1957). Bleaches, hair colorings and dye removers. In Sagarin, E., (ed.), Cosmetics, Science and Technology p 479. Interscience Publishers.
  2. Narayana, S., Krishnaswamy B. and Patel, D. (2013). Trends in use of hair dye: A cross-sectional study. Intl J Trichology 5(3) 140-143.
  3. Truth About Hair Color (Accessed 2021, Jun 3). Color by numbers. Available at:
  4. Erdmann and Monnet (1883). French Patent 158,588.
  5. Patkar Kunda, B. (2008). Herbal cosmetics in ancient India. Indian J Plast Surg 41 (suppl) 134–137.
  6. Saroja, P.R. and Veluchamy, G. (1983). Simple medicine in Siddha system. Available at:
  7. Karunamoorthi, K., et al. (2012). Tamil traditional medicinal system—Siddha: An indigenous health practice in the international perspectives. Availableat:
  8. Perugini, P. and Musitelli, G. (2020). System for the determination of the surface and mechanical characteristics of filamentous structures in particularskin appendages, structures associated therewith, natural or synthetic fibers and their aggregates. Available at:

Functional Cosmetics Ingredients from Indian Medicinal Herbs

Siddha Medico Botanical Extracts – extraction of novo plants-herbs metabolites, Safe Edible are known       



HYPERLINKS TO DOCUMENT CLOUD are provided as Hyper Links- You can view (click orCopy and Paste to your browser)

When Clicked open the brochure – Scroll to Page 2 and click on Trade Name (hyperlinks) to go to the Tech Specs.


With Plant Specific Botanical DNA Core Code(s) for Identification in a Claim Label Listed Retail Brand or Formulation as lowas 0.000035% With Color Fastness Intensity Photo Protection Lasting Properties up to 7 years in the Retail Branded Product

“CAMPO SIDDHA MEDICO BOTANICAL EXTRACTS Version 5.55 -2021 23 MAY -V-10-5050-23.pdf”

Compliant to US.FDA 21 CFR 11 Part (US FDA Revision March 2017) -Botanical Identities- (Natural Cosmetics)

“SIDDHA MEDICO Bot Ext 2021-23 May ISO 16128-1 – 2 Global Inventory Global Regulation V.10-0505-23.pdf

These Natural Bio-Extraction activity is built on the basis of the exclusive partnership with the international laboratory Kampoyaki Herbs :Laboratory, specialized in the Bio-Extraction of these products certifies according to the standards: ISO 17 034: 2016 (Analytical Reference Material Producers). ISO 17 025: 2017 (Testing and calibration laboratories) CAMPO partnership perfectly meets Your quality requirements CAMPO SIDDHA MEDICO BOTANICAL EXTRACTS – BOTANTICAL PLANTS EXTRACTS TO COLOUR HAIR WITHOUT COLOURS


Trouble reading this? Click Here.
Send to a Colleague.

Vegan Roots: Siddha-inspired Botanical Extracts as Colorants for Hair Dyes*

By: Francesca Schumann, Annamaria Ratti and Viviana Brancato, Bregaglio srl, Biassono, Italy 

This article describes the development of hair dyes with 100% vegetable-derived colorants. Testing showed good semi-permanent hair color efficacy without the use of synthetic colorants, alkalizers and peroxide or other oxidizers.

Read More → Read this article in the digital magazine

These Natural Bio-Extraction activity is built on the basis of the exclusive partnership with the international laboratory Kampoyaki Herbs: Laboratory, specialized in the Bio-Extraction of these products certifies according to the standards: ISO 17 034: 2016 (Analytical Reference Material Producers). ISO 17 025: 2017 (Testing and calibration laboratories)

CAMPO partnership perfectly meets Your quality requirements

Society (RAPS)

Where biotech firms outsource when they need high purity IUPAC & Novo Botanical Molecules

Citroneem Oil (Flower Essential Fractionate with Long Lasting up to 12 hours Insect Repellant, Potent Anti-Viral, Potent Nasal Decongestant & Natural ISO FDA STANDARD Sunblock SPF >20)

Honeysuckle Flower Essential Oil (Anti-Viral Anti-Microbial Biostatic-Potent Nasal Decongestant)

Comments are closed.